### A Comparison of Sentinel-1 Approaches to Map the May-June 2022 Floods in Sylhet, Bangladesh

Alex Saunders<sup>1</sup>, Jonathan Giezendanner<sup>1</sup>, Beth Tellman<sup>1</sup>, Ariful Islam<sup>1</sup>, Arifuzzaman Bhuiyan<sup>2</sup>, A.K.M. Islam<sup>3</sup>

<sup>1</sup>University of Arizona <sup>2</sup>Flood Forecasting and Warning Centre, Bangladesh <sup>3</sup>Bangladesh Institute of Water and Flood Management







Getty images via NY Times

#### Sylhet experienced extreme flooding in May-June 2022



2022 floods



Getty images via NY Times

Bangladesh Haor and Wetland Development Board

#### Sylhet experienced extreme flooding in May-June 2022



Gowainghat, Sylhet Division



Companiganj, Sylhet Division

#### Why create remotely sensed maps after the floods?

- Assess accuracy of commonly used mapping methods and products
- Compare "local" vs "global" approaches
- Compare machine learning (ML) vs "traditional" non-ML approaches

#### **Copernicus Global Flood Monitoring**



#### **UNOSAT Analysis**



# Synthetic Aperture Radar gives us the chance to map the May-June 2022 floods



## Synthetic Aperture Radar gives us the chance to map the May-June 2022 floods



### We compared three Sentinel-1 algorithms / datasets

| Method / dataset                            | Description                                                  | Sensor     | Resolution      |
|---------------------------------------------|--------------------------------------------------------------|------------|-----------------|
| Thomas et al., 2023                         | <b>"Local"</b> change detection, developed for Bangladesh    | Sentinel-1 | 2-10 days, 10 m |
| Paul & Ganju, 2021                          | Pre-trained <b>"global" machine</b><br><b>learning</b> (CNN) | Sentinel-1 | 2-10 days, 10 m |
| Copernicus Global Flood<br>Monitoring "GFM" | Automated "global"<br>emergency mapping product              | Sentinel-1 | 2-10 days, 10 m |

# We hand labeled Planet images for validation

- 1024x1024 pixels @ 3 m resolution
- **36 labels** across three cloud-free dates





Hand label





### We compared three Sentinel-1 algorithms / datasets

| Method / dataset                            | Description                                                  | Sensor     | Resolution      |
|---------------------------------------------|--------------------------------------------------------------|------------|-----------------|
| Thomas et al., 2023                         | <b>"Local"</b> change detection, developed for Bangladesh    | Sentinel-1 | 2-10 days, 10 m |
| Paul & Ganju, 2021                          | Pre-trained <b>"global" machine</b><br><b>learning</b> (CNN) | Sentinel-1 | 2-10 days, 10 m |
| Copernicus Global Flood<br>Monitoring "GFM" | Automated "global"<br>emergency mapping product              | Sentinel-1 | 2-10 days, 10 m |

# We hand labeled Planet images for validation

- 1024x1024 pixels @ 3 m resolution
- **36 labels** across three cloud-free dates

#### True color (RGB)





False color (NIR-B-G)

Hand label



### Local non-ML and global ML algorithms give higher accuracy than GFM



#### Local non-ML and global ML algorithms give higher accuracy than GFM Global automated,



#### Local non-ML and global ML algorithms give higher accuracy than GFM Global automated,



#### Local non-ML and global ML algorithms give higher accuracy than GFM Global automated,





2022-05-25 only

2022-06-18 only

Both dates

#### **Temporal comparison of inundation extent**



#### Takeaways

- 1. Local algorithm and global ML algorithm give equally high accuracy *ML generalizes well, but had advantage of training on other Bangladesh data*
- 2. GFM shows lower accuracy *tradeoff for global coverage and ready-to-use maps? Underprediction due to ensemble method?*

**Future work:** more studies to understand utility of emergency mapping products in different contexts

#### References

Paul, S., Ganju, S., 2021. Flood Segmentation on Sentinel-1 SAR Imagery with Semi-Supervised Learning. <u>https://doi.org/10.48550/arXiv.2107.08369</u>

Thomas et al. 2023. A framework to assess remote sensing algorithms for satellite-based flood index insurance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 1–17. <u>https://doi.org/10.1109/JSTARS.2023.3244098</u>

### Thank you for listening!

alexsaunders@arizona.edu @alexsaunderstwt



#### Access the code and data →

Thanks to Ana Torres, Nicolas Lopez-de-Silanes and Zazoe van Lieshout who hand-labeled PlanetScope tiles.

This work is undertaken as part of the NASA New (Early Career) Investigators (NIP) Program (80NSSC21K1044).







Getty images via NY Times

### Appendices

# SAR surface water mapping algorithm recently developed for Bangladesh

- Sentinel-1 backscatter thresholding developed by Thomas et al. (2023)
  - Regional dry baseline from soil moisture
  - Additional VH condition
  - Additional smoothing
- Improved accuracy across four recent events



TABLE IIIACCURACY METRICS FOR THE PROPOSED SENTINEL-1ALGORITHM, THE PREVIOUS SENTINEL-1 ALGORITHM, AND THEMODIS ALGORITHM.

|                        | Proposed Sentinel-<br>1 Algorithm |       | Sentinel-1,<br>DeVries <i>et al.</i> [31] |       | MODIS, Islam <i>et al.</i><br>[76] |       |
|------------------------|-----------------------------------|-------|-------------------------------------------|-------|------------------------------------|-------|
| Event                  | F1                                | Bias  | F1                                        | Bias  | F1                                 | Bias  |
| 1. Sylhet              | 0.901                             | 1.043 | 0.818                                     | 0.908 | 0.737                              | 2.535 |
| 2. Natore/<br>Naogoan  | 0.970                             | 1.047 | 0.953                                     | 0.887 | 0.931                              | 1.100 |
| 3. Sirajganj/<br>Pabna | 0.930                             | 0.875 | 0.822                                     | 0.590 | 0.849                              | 1.527 |
| 4. Jamalpur            | 0.897                             | 1.293 | 0.873                                     | 0.727 | 0.835                              | 1.871 |
| Average                | 0.925                             | 1.065 | 0.867                                     | 0.778 | 0.838                              | 1.758 |
| Standard<br>Deviation  | 0.034                             | 0.172 | 0.063                                     | 0.149 | 0.080                              | 0.606 |

Thomas et al. (2023)

#### Peak water extent occurred around 18 June



#### Peak water extent occurred around 18 June



#### But most water accumulated during May



#### Large parts remained flooded for up to several months



- Deepest depressions in the Haor Basin remained inundated throughout May-August
- Was duration an important factor in the severity of impacts?

